234 research outputs found

    Maternal race-ethnicity, immigrant status, country of birth, and the odds of a child with autism spectrum disorder

    Get PDF
    The risk of autism spectrum disorder varies by maternal race–ethnicity, immigration status, and birth region. In this retrospective cohort study, Western Australian state registries and a study population of 134 204 mothers enabled us to examine the odds of autism spectrum disorder with intellectual disability in children born from 1994 to 2005 by the aforementioned characteristics. We adjusted for maternal age, parity, socioeconomic status, and birth year. Indigenous women were 50% less likely to have a child with autism spectrum disorder with intellectual disability than Caucasian, nonimmigrant women. Overall, immigrant women were 40% less likely to have a child with autism spectrum disorder with intellectual disability than nonimmigrant women. However, Black women from East Africa had more than 3.5 times the odds of autism spectrum disorder with intellectual disability in their children than Caucasian nonimmigrant women. Research is implicated on risk and protective factors for autism spectrum disorder with intellectual disability in the children of immigrant women

    Releasing activity disengages Cohesin’s Smc3/Scc1 interface in a process blocked by Acetylation

    Get PDF
    Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin’s Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin’s association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase- independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation

    Nitrogen addition and ecosystem functioning: Both species abundances and traits alter community structure and function

    Get PDF
    Increased nutrient inputs can cause shifts in plant community composition and plant functional traits, both of which affect ecosystem function. We studied community- and species-level leaf functional trait changes in a full factorial nitrogen (N), phosphorus (P), and potassium (K) fertilization experiment in a semi-arid grassland. Nitrogen was the only nutrient addition to significantly affect leaf functional traits, and N addition increased community-weighted specific leaf area (SLA) by 19%, leaf chlorophyll content by 34%, height by 26%, and leaf dry matter content (LDMC) decreased by 11% while leaf thickness and toughness did not change significantly. At the species level, most species contributed to the community-weighted trait and increased in SLA, chlorophyll, height, and LDMC with N addition. These intraspecific changes in functional traits account for 51–71% of the community-level changes in SLA, chlorophyll, plant height, and LDMC. The remaining change is due to species abundance changes; the two most abundant species (Bouteloua gracilis and Carex filifolia) decreased in abundance with N addition while subdominant species increased in abundance. We also found annual variation in SLA, chlorophyll, plant height, and LDMC to be as important in influencing traits as N addition, likely due to differences in precipitation. Aboveground net primary productivity (ANPP) did not change significantly with N addition. However, N addition caused a 34% increase in leaf area index (LAI) and a 67% increase in canopy chlorophyll density. We demonstrate that nitrogen-induced changes in both functional traits and species abundances magnify ANPP changes in LAI and canopy chlorophyll density. Therefore, ANPP underestimates N addition-induced ecosystem-level changes in the canopy vegetation

    Microbial transformations of selenite by methane-oxidizing bacteria

    Get PDF
    Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology

    Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Get PDF
    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders

    Insula as the Interface Between Body Awareness and Movement: A Neurofeedback-Guided Kinesthetic Motor Imagery Study in Parkinson’s Disease

    Get PDF
    Intentional movement is an internally driven process that requires the integration of motivational and sensory cues with motor preparedness. In addition to the motor cortical-basal ganglia circuits, the limbic circuits are also involved in the integration of these cues. Individuals with Parkinson’s disease (PD) have a particular difficulty with internally generating intentional movements and maintaining the speed, size, and vigor of movements. This difficulty improves when they are provided with external cues suggesting that there is a problem with the internal motivation of movement in PD. The prevailing view attributes this difficulty in PD to the dysfunction of motor cortical-basal ganglia circuits. First, we argue that the standard cortical-basal ganglia circuit model of motor dysfunction in PD needs to be expanded to include the insula which is a major hub within the limbic circuits. We propose a neural circuit model highlighting the interaction between the insula and dorsomedial frontal cortex which is involved in generating intentional movements. The insula processes a wide range of sensory signals arising from the body and integrates them with the emotional and motivational context. In doing so, it provides the impetus to the dorsomedial frontal cortex to initiate and sustain movement. Second, we present the results of our proof-of-concept experiment demonstrating that the functional connectivity of the insula-dorsomedial frontal cortex circuit can be enhanced with neurofeedback-guided kinesthetic motor imagery using functional magnetic resonance imaging in subjects with PD. Specifically, we found that the intensity and quality of body sensations evoked during motor imagery and the emotional and motivational context of motor imagery determined the direction (i.e., negative or positive) of the insula-dorsomedial frontal cortex functional connectivity. After 10–12 neurofeedback sessions and “off-line” practice of the successful motor imagery strategies all subjects showed a significant increase in the insula-dorsomedial frontal cortex functional connectivity. Finally, we discuss the implications of these results regarding motor function in patients with PD and propose suggestions for future studies

    Extreme multi-valence states in mixed actinide oxides

    Get PDF
    To assure the safety of oxide-fuel based nuclear reactors, the knowledge of the atomic-scale properties of U1−yMyO2±x materials is essential. These compounds show complex chemical properties, originating from the fact that actinides and rare earths may occur with different oxidation states. In these mostly ionic materials, aliovalent cationic configurations can induce changes in the oxygen stoichiometry, with dramatic effects on the properties of the fuel. First studies on U1−yAmyO2±x indicated that these materials exhibit particularly complex electronic and local-structure configurations. Here we present an in-depth study of these compounds, over a wide compositional domain, by combining XRD, XAS and Raman spectroscopy. We provide evidences of the co-existence of four different cations (U4+, U5+, Am3+, Am4+) in U1−yMyO2±x compounds, which nevertheless maintain the fluorite structure. Indeed, we show that the cationic sublattice is basically unaffected by the extreme multi-valence states, whereas complex defects are present in the oxygen sublattice
    • 

    corecore